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Abstract
Purpose Automated analysis of microscopy image data typically requires complex pipelines that involve multiple methods
for different image analysis tasks. To achieve best results of the analysis pipelines, method-dependent hyperparameters need
to be optimized. However, complex pipelines often suffer from the fact that calculation of the gradient of the loss function is
analytically or computationally infeasible. Therefore, first- or higher-order optimization methods cannot be applied.
Methods We developed a new framework for zero-order black-box hyperparameter optimization called HyperHyper, which
has a modular architecture that separates hyperparameter sampling and optimization. We also developed a visualization of
the loss function based on infimum projection to obtain further insights into the optimization problem.
Results We applied HyperHyper in three different experiments with different imagingmodalities, and evaluated in total more
than 400.000 hyperparameter combinations. HyperHyper was used for optimizing two pipelines for cell nuclei segmentation
in prostate tissue microscopy images and two pipelines for detection of hepatitis C virus proteins in live cell microscopy data.
We evaluated the impact of separating the sampling and optimization strategy using different optimizers and employed an
infimum projection for visualizing the hyperparameter space.
Conclusions The separation of sampling and optimization strategy of the proposed HyperHyper optimization framework
improves the result of the investigated image analysis pipelines. Visualization of the loss function based on infimum projection
enables gaining further insights on the optimization process.
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Introduction

Automatic analysis of microscopy data typically requires
complex pipelines comprising multiple methods to solve dif-
ferent image analysis tasks (e.g., cell segmentation [21], cell
tracking [27], particle tracking [3], track analysis [7,19,24],
and image registration [25]). However, most methods suffer
from determining application-dependent hyperparameters to
obtain the best performance. More generally, medical deci-
sion support systems evaluating the patient status in the
clinic can highly depend on specific hyperparameters [5].
Also the quality and performance of image-guided interven-
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tion [4] generally highly depends on hyperparameters. For
complex analysis pipelines, manual optimization of hyper-
parameters is generally very time-consuming and difficult for
a high-dimensional hyperparameter space. Thus, automated
optimization is required. However, computation of the gra-
dient of the loss function is analytically or computationally
infeasible, which prevents the use of first- or higher-order
optimization methods. This limitation can be overcome by
using zero-order optimization also known as black-box opti-
mization [28], which does not require gradient information
of the loss function. Black-box optimization uses only a lim-
ited number of evaluations (hyperparameter configurations)
to determine a (local) optimum of the generally non-convex
optimization problem.

In this work, we propose a framework for black-box
hyperparameter optimization for biomedical image analy-
sis pipelines called HyperHyper. This framework has several
advantages compared to existing hyperparameter optimiza-
tion frameworks such as Google Vizier [10], Sherpa [11],
Auto-WEKA[26], Spearmint [23], and Hyperopt [14]. In
Table1, an overview of key features of most popular exist-
ing optimization frameworks and HyperHyper is provided.
The table extends the comparison in [11] and also includes
updated information about the frameworks. Existing frame-
works lack certain features (e.g., modular optimizer, job
wrapper, and integrated scheduler), which are essential to
optimize complex image analysis pipelines using different
computing paradigms and environments. The pipelines for
biomedical image analysis typically include a large variety
of hyperparameters, which increase the complexity of the
hyperparameter space and make optimization challenging.
To determine optimal solutions, our HyperHyper frame-
work employs more than 40 different optimization methods,
while existing frameworks include significantly less meth-
ods (e.g., up to five methods as in Table1). The high number
of optimizers in HyperHyper was realized by separation of
hyperparameter sampling and optimization strategy. Except
Auto-Weka, all frameworks in Table1 can operate in a dis-
tributed computing environment. However, the frameworks
(except HyperOpt) do not include an integrated scheduler.
To optimize hyperparameters on different cluster comput-
ing infrastructures, we implemented an integrated scheduler
which is advantageous when deploying image analysis meth-
ods on heterogeneous computing infrastructures.

To demonstrate the suitability of our optimization frame-
work HyperHyper, we conducted three different experi-
ments. In the first experiment, we evaluateHyperHyper using
different optimizers for two different complex pipelines to
segment cell nuclei in prostate tissue microscopy images.
This experiment shows the impact of our proposed separa-
tion of sampling and optimization strategy to obtain a better
performance of the image analysis pipelines.With the second
experiment, we evaluate HyperHyper to detect the hepatitis

C virus (HCV) nonstructural protein 5A (NS5A) in live cell
microscopy images. Again, we demonstrate the effect of sep-
arating the sampling and optimization strategy. Furthermore,
we show how our proposed visualizations of the loss function
can help to assess the used optimizers. In the third experi-
ment, we consider an extension of the pipeline for detecting
HCVproteins by image pre-processing.We showhow a visu-
alization based on infimum projection of a high-dimensional
loss function can gain insights into the optimization problem.

Material andmethods

Overview of HyperHyper

The computing environments in the scientific commu-
nity are very heterogeneous due to different computing
paradigms (e.g., HPC, Cloud, Mainframe) and multiple pro-
gramming languages. Moreover, the use cases for opti-
mization of hyperparameters vary a lot. Incorporation of
prior knowledge about the hyperparameters from domain
knowledgeor previous optimizations can significantly reduce
the search space. Therefore, a hyperparameter optimization
framework should be designed to be environment agnos-
tic (e.g., programming language, compute infrastructure),
extendable through modularity, and should allow incorporat-
ing prior knowledge. Moreover, flexible distribution of the
computation should be supported since evaluation of hyper-
parameter configurations is often computational expensive.
In addition, visualization of the optimization process and
hyperparameter space is important to reveal insights about
the optimization problem.

Wepropose theblack-boxoptimization frameworkHyper-
Hyper for distributed computing. This framework subdivides
hyperparameter optimization in a hyperparameter space def-
inition, a general optimizer containing a hyperparameter
candidate sampler and optimization strategy, and an evalua-
tion loop (Fig. 1). The candidate sampler and optimization
strategy can be selected from a model zoo to design an
optimizer for a specific application. In addition, the hyper-
parameter space definition incorporates prior distributions,
bounds, and the sampling resolution. The candidate sam-
pler and optimization strategy can exploit the structure of the
hyperparameter space to improve convergence of the opti-
mization. To find the global optimum, Grid Search can be
used. Moreover, by design the execution of the evaluation
loop can be performed highly distributed and is programming
language agnostic. We integrated modules for monitoring
and visualization to analyze the optimization problem. These
visualizations including an infimum projection can reveal
insights into, for example, the performance of the optimiza-
tion process and the dependencies of the hyperparameters.
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Table 1 Comparison of different hyperparameter optimization frameworks

Feature Google Vizier Sherpa Auto-WEKA Spearmint HyperOpt HyperHyper

Number of optimization methods 3 5 1 5 5 >40

Modular optimizer No No No No No Yes

Job wrapper No No No No No Yes

Distributed Yes Yes No Yes Yes Yes

Integrated scheduler No No No No Yes Yes

Early stopping Yes Yes No No No Yes

Visualization Yes Yes No No No Yes

The best results are highlighted in bold

Fig. 1 Schematic representation
of HyperHyper software
architecture with modular
structure

Optimizer

To perform optimization, constraints on the hyperparame-
ter space have to be specified. This includes the bounds and
hierarchy of each parameter, the sampling resolution, and
additional prior distributions (e.g., discrete or continuous uni-
form, Gaussian, log Gaussian, exponential distributions). In
our experiments, we used pipelines that involve non-ordinal
parameters. Therefore, we decided to choose optimizers
which can handle variables without a natural order (Table2).
To create optimizers in HyperHyper as listed in Table2, the
sampling and optimization strategy can be selected from the
model zoo.

The most naive optimization strategy is to perform
Random Search (Random) by random sampling from the
prior distributions. In Sequential Model-based Optimiza-
tion (SMBO) like SMAC[12], a surrogate model is fitted
to the best performing hyperparameters. We investigated
SMAC with the original random forest (SMAC-RF), and
with XGBoost [2] as surrogate model. We decided to use
XGBoost, since it is currently one of the most popular deci-
sion tree-based models. Moreover, we investigated the Tree
of Parzen Estimator (TPE), which performs a nonparamet-
ric density approximation of the best performing hyper-
parameter configurations [18]. Finally, we use Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), which is a
generic population-basedmeta-heuristic based optimizer [9].
In CMA-ES feature sets are assumed as “genomes”, which
undergo evolutionary processes like selection, recombina-

tion, or mutation to increase the probability for sampling
promising hyperparameter configurations.

HyperHyper evaluation loop

In the HyperHyper software architecture, the hyperparame-
ter evaluation is decoupled from the optimization strategy.
The hyperparameter evaluation is split into the pre-hook,
the evaluation, and a post-hook (see Fig. 1). The pre-hook
is used for preparation of the experiment by performing
a single experiment with a specific set of hyperparame-
ters based on the hyperparameter sampling and optimization
strategy. The evaluation step calculates the performance of
the current hyperparameter configuration using the desired
objective function. The post-hook performs clean up opera-
tions. Due to the generic formulation of the evaluation loop,
any concrete implementations can be used in this plug and
play system. We investigated direct hooks for Python, job
wrapper, and remote execution of workflows (e.g., Galaxy
Imaging [1,30]). For scripts directly written in Python, entry
points can be called directly by HyperHyper. A job wrapper
wraps pipelines that can be called via command line. This
approach is themost generic, since it canhandle arbitrary pro-
gramming languages. Finally, remote execution ofworkflows
in workflow engines like Galaxy is useful to leverage already
optimized third-party high-performance computing (HPC) or
cloud infrastructure. The execution of the loop can be dis-
tributed using a central database for coordination andworkers
for actual execution. Moreover, the distributed optimization
process can be monitored by retrieving status information
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Table 2 Investigated optimizers
and corresponding sampling and
optimization strategies

Optimizer Sampling strategy Optimization strategy

Random Search Random –

TPE Parzen estimator –

CMA-ES Multivariate normal Evolutionary

SMAC-RF Random Random forest

SMAC-XGBoost Random XGBoost

from the central database. The workers can be scheduled to
available HPC or cloud infrastructure using, for example,
Nextflow[6]. This approach has the benefit, that it can lever-
age and even combine a vast variety of schedulers or cloud
systems, even at multiple sites.

Experimental results

To showcase the HyperHyper optimization framework, we
conducted three different experiments. First, we consider
the segmentation of cell nuclei in prostate tissue slides
using a clustering and a deep learning pipeline. Second,
we study the detection of HCV proteins in live cell fluo-
rescence microscopy images. In these two experiments, we
show that the separation of sampling and optimization strat-
egy improves the optimal solution. In the third experiment,
we consider an extension of the pipeline for detection of
HCV proteins by image pre-processing. In this experiment,
we show how an infimum projection of the loss surface can
provide insights into the optimization problem. In the fol-
lowing, the used hyperparameters that need to be optimized
are highlighted in italics.

Experiment 1: segmentation of cell nuclei

In the field of histopathology, segmentation of cell nuclei in
tissue microscopy images is a pivotal and essential task. We
acquired 2D DAPI stained prostate tissue image slices using
an Opera spinning disk confocal microscope at 60x mag-
nification with a resolution of 107.7 nm × 107.7 nm. Cell
nuclei segmentation is needed for telomere quantification on
a single-cell basis. Due to image noise, variation of cell shape
and image intensity, and low contrast, cell nuclei segmenta-
tion is challenging (Fig. 2) [29]. For analyzing high-content
histological screening data, hyperparameters of image anal-
ysis methods need to be optimized, which is often very
difficult or not feasible to perform manually due to the high
dimensionality of the hyperparameter space. We applied
HyperHyper in conjunction with two different segmenta-
tion pipelines to analyze tissue images of the prostate and
investigate the suitability of our black-box hyperparameter
optimization framework.

The first pipeline consists of K-means clustering after
image smoothing by aGaussian filter with σGauss. The type of

cluster initialization (random, k-means++) is optimized and
the seed value is set to a fixed value to generate a determinis-
tic segmentation pipeline. Subsequently, we applied median
filtering and morphological closing of small holes. Then,
we computed a geometric feature (e.g., major axis length,
eccentricity) determined by optimization and for each cluster
compared it to the mean of all clusters to assign the clus-
ter to foreground. The segmented objects are thresholded
regarding area (upper and lower threshold) and solidity. In
summary, for this pipeline the hyperparameters σGauss, clus-
ter initialization, geometric feature, area, and solidity need
to be optimized.

The second pipeline consists of a U-Net [21] with Adam
optimizer [13] and early stopping. For the network, we used
the same seed value for sampling the initial weights as for
the K-means clustering pipeline for a fair comparison. Data
augmentation was performed with image rotation, flipping,
and elastic deformation. To discard small objects, we thresh-
olded the geometric feature “area” with area threshold. In
summary, for this pipeline the hyperparameters learning rate,
batch size, and area threshold need to be optimized.

We applied HyperHyper for both pipelines using multiple
optimizers namely Random, TPE, CMA-ES, SMAC-RF, and
SMAC-XGBoost and performed a distributed optimization
on 20 computer nodes. We evaluated the K-means clustering
pipeline with 10 runs and 200 evaluations for each optimizer
(total: 10.000 evaluations) and the U-Net pipeline with 1 run
and 200 evaluations for each optimizer (total: 1.000 evalu-
ations). To determine the global optimum, we applied Grid
Search using 17.388 evaluations. The tissue images have dif-
ferent sizes and were divided into 256 × 256 pixel image
patches before randomly splitting them into 75% for train-
ing and 25% for testing. For optimization, we used 60 ground
truth images annotated by an expert. TheK-means clustering
andU-Net segmentation performancewas optimizedwith the
soft Dice loss [16].

The results for both pipelines are reported in Table3 as
mean and standard deviation of Dice (balancing precision
and sensitivity) and asmean and standard deviation of the dif-
ference (�Dice) to the Dice value after the warm-up phase.
The optimizers perform for each run a warm-up phase and
explore the hyperparameter space by evaluating 20 random
samples before applying the optimization strategy. The over-
all improvement by the optimization for each optimizer is
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Fig. 2 Examples of prostate tissue images showing various challenges for image analysis. a Strong background noise. b Strong shape variation. c
Strong intensity variation. d Low contrast

Table 3 Results for the
K-means clustering and U-Net
pipeline with different
optimizers

Pipeline Optimizer �Dice (improvement) Dice

K-means clustering Random 0.030±0.028 0.606±0.025

TPE 0.045±0.028 0.609±0.020

CMA-ES 0.077±0.034 0.642±0.021

SMAC-RF 0.094±0.043 0.642±0.026

SMAC-XGBoost 0.064±0.038 0.634±0.021

Grid Search (coarse) – 0.614

Grid Search – 0.654

U-Net Random 0.019 0.847

TPE 0.038 0.850

CMA-ES 0.033 0.852

SMAC-RF 0.017 0.846

SMAC-XGBoost 0.039 0.847

Grid Search – 0.864

The table shows the improvement �Dice (mean ± std.) after the warm-up phase and the absolute Dice value
(mean ± std.). The best results are highlighted in bold. The global optimum is determined by Grid Search
and highlighted in italic

Fig. 3 Convergence of different
optimizers as a function of the
number of iterations. a K-means
clustering pipeline. b U-Net
pipeline

reflected by the mean �Dice. The Dice values as a function
of the number of iterations for all optimizers are shown in
Fig. 3. For the K-means clustering pipeline, CMA-ES and
SMAC-RF yield the best segmentation performance with a
Dice value of 0.642. However, CMA-ES has a lower standard
deviation with a Dice value of 0.021 compared to SMAC-
RF. TPE yields the lowest standard deviation regarding Dice
among all optimizers. The global optimum of 0.654 was
determined by Grid Search. Instead of using (dense) Grid
Search with a high number of evaluations (17.388 evalu-
ations), we also used a coarse grid with a similar number

of evaluations as for the optimizers (198 evaluations). For
the K-means clustering pipeline, we obtained a Dice value
of 0.614, which is lower compared to SMAC-XGBoost,
SMAC-RF, and CMA-ES, but higher than Random and TPE.
Regarding �Dice, SMAC-RF obtains the largest improve-
ment �Dice = 0.094 compared to all other optimizers. For
the U-Net pipeline, CMA-ES achieves the largest Dice value
of 0.852, SMAC-XGBoost obtains the highest improvement
�Dice = 0.039. In Fig. 4, the segmentation results for the
best optimizer for each pipeline for Dice and the best opti-
mizer for �Dice are shown. Comparing the results with the
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Fig. 4 Comparison of segmentation results for both pipelines with dif-
ferent optimizers. aOriginal image. bOriginal image with ground truth
annotations by an expert. c K-means clustering pipeline with CMA-ES.

d K-means clustering pipeline with SMAC-RF. e U-Net pipeline with
CMA-ES. f U-Net pipeline with SMAC-XGBoost

ground truth, it can be seen that the K-means clustering
pipeline has problems with splitting cell nuclei for both best
optimizers for Dice and �Dice. Overall, the best segmenta-
tion performance determined by Grid Search is achieved by
the U-Net pipeline, which yields a significantly higher Dice
value of 0.864 compared to the K-means clustering pipeline
with 0.654. For K-means clustering, comparing SMAC-RF
and SMAC-XGBoost in Table3, SMAC-RF yields a better
Dice value than SMAC-XGBoost. In contrast, for the U-Net
pipeline, SMAC-XGBoost yields a better Dice value than
SMAC-RF. Since SMAC-RF and SMAC-XGBoost use the
same sampling strategy but different optimization strategies,
this demonstrates that the proposed separation of sampling
and optimization strategy in HyperHyper yields better solu-
tions.

Experiment 2: detection of HCV proteins

In the second experiment, we evaluated HyperHyper for live
cell fluorescence microscopy data displaying fluorescently
labeled HCV NS5A as small round particles. Detection of
subcellular structures such as proteins is a prerequisite for
tracking [3] to obtain quantitative informationoncellular pro-
cesses. The live cell data were acquired by an Ultra-View

ERS spinning disk confocal microscope with an image size
of 355 × 447 pixels. To detect HCV proteins, we used the
spot-enhancing filter (SEF) [22] which consists of applying
a Laplacian-of-Gaussian filter (LoG) with standard devia-
tion σLoG, followed by thresholding the filtered image. The
threshold is based on the mean intensity of the filtered image
plus a factor c times the standard deviation of the filtered
image intensities [8,20]. To detect HCV proteins, the hyper-
parameters σLoG and c have to be optimized.

As in experiment1, we used Random, TPE, CMA-ES,
SMAC-RF, and SMAC-XGBoost for hyperparameter opti-
mization. We performed 10 runs per optimizer with 3.500
evaluations distributed on 20 compute nodes (total: 175.000
evaluations). To determine the global optimum, we used
dense Grid Search with 35.000 evaluations distributed on
20 compute nodes. The performance of SEF detection was
optimized and evaluated using the F1 score (balancing preci-
sion and sensitivity) and 128 ground truth annotations. The
assignment between the ground truth annotations and SEF
detections was determined using theMunkres algorithm[15]
and a gating distance of 5 pixels. Similar to experiment1, we
computed the mean and standard deviation of �F1 showing
the difference to the F1 score after the warm-up phase.
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Table 4 Results for the HCV
protein detection pipeline with
different optimizers

Pipeline Optimizer �F1 (improvement) F1

SEF Random 0.043±0.033 0.871±0.002

TPE 0.041±0.023 0.867±0.000

CMA-ES 0.022±0.008 0.871±0.001

SMAC-RF 0.050±0.037 0.872±0.000

SMAC-XGBoost 0.041±0.037 0.872±0.000

Grid Search – 0.872

The table shows the improvement �F1 (mean ± std.) after the warm-up phase and the absolute F1 score
(mean ± std.). The best results are highlighted in bold. The global optimum is determined by Grid Search
and highlighted in italic

Fig. 5 Detection results for HCV live cell microscopy data with different hyperparameter optimizations. a Ground truth annotated by an expert. b
Experiment2 using Grid Search. c Experiment2 using SMAC-RF. d Experiment3 using Grid Search

The results for the different optimizers are shown in
Table4. The best performance is obtained by SMAC-RF and
SMAC-XGBoost with an F1 score of 0.872, which are the
only optimizers reaching the global optimum. The largest
improvement �F1 is obtained by SMAC-RF with 0.050. In
Fig. 5c, the result for SMAC-RF (green circles) is shown
together with the ground truth (red circles) in Fig. 5a and
the global optimum (Grid Search) in Fig. 5b. The F1 score
as a function of the number of iterations for all optimiz-
ers is depicted in Fig. 6. To better assess the convergence of
the optimizers, only the first 2000 iterations are shown. The
fastest convergence is obtained by SMAC-RF and SMAC-
XGBoost, whereas TPE is slowest. To obtain more insights
into the optimization process and to visualize the dependency
between the hyperparameters, we computed the loss surface
with Grid Search. The loss surface is shown in Fig. 7a and the
global optimum is marked by a blue star. A clear dependence
between c and σLoG is visible by the valley shape of the loss
surface. In addition, a visualization of the trail of an optimizer
on the loss surface is provided for spatial assessment of the
convergence process. In Fig. 7b, the best trails of Random
and SMAC-RF are depicted. A trail represents the connec-
tion of the best evaluations per optimization step. It can be
seen that Randomfinds the optimummore directly compared
to SMAC-RF. However, according to Fig. 6, SMAC-RF has
a much faster convergence than Random.

Fig. 6 Convergence of different optimizers as a function of the number
of iterations

Experiment 3: image pre-processing for detection of
HCV proteins

With this experiment, we show the importance of an infi-
mum projection as visualization of the loss function to gain
further insight on the dependency of the hyperparameters.
We study an additional image pre-processing step for the
pipeline for HCV protein detection from experiment2. As
pre-processing, we smoothed the image with a Gaussian fil-
ter with standard deviation σGauss and subtracted the filtered
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Fig. 7 Loss surface of experiment2 for 2D hyperparameter space (c
and σLoG). a The hyperparameter space was sampled with Grid Search
and the global optimum is marked with a blue star. b Same as in a but
with optimization trails of Random (green) and SMAC-RF (blue). For

both trails, the dot is the starting point and the star shows the found opti-
mal solution. Both trails represent the best evaluations per optimization
step over time

Fig. 8 HCV fluorescence microscopy data. a Original image. b Pre-
processed image with optimal σGauss obtained by Grid Search

Table 5 Results for the two
HCV protein detection pipelines
(experiment2 and 3) with Grid
Search

Pipeline F1

SEF 0.872

SEF+pre-processing 0.888

The table shows the absolute F1
score. The best result is high-
lighted in bold

image from the original image to enhance the particles and
suppress background noise. We now have a 3D hyperpa-
rameter space containing σGauss, σLoG, and c. We computed
the global optimum with Grid Search (total: 175.000 evalu-
ations).

Figure8a, b displays the original and filtered live cell
data, respectively. Table5 shows the improvement using the
pre-processing step. The F1 score using pre-processing is
1.6% higher compared to the result from experiment2 with-
out pre-processing. The detection result using pre-processing
is displayed in Fig. 5d. All HCV proteins within the upper
two cells are detected, whereas without pre-processing as in
experiment2 only a few of them were detected.

To obtain insights into the optimization process and to
quantify the dependency of the hyperparameters, we con-
ducted a principal component analysis (PCA) [17] of the
loss function. The results are shown in Table6. The values of
the loss function were normalized (zero mean and variance
of one), and the eigenvectors with corresponding eigenval-
ues were computed (principal components, PCs). It can be
seen that in order to represent 90% of the variance, the first
three PCs need to be taken into account. For the first PC
the hyperparameter σGauss has a more than ten times smaller
influence than c and σLoG. In addition, the other two PCs
have a minor influence on the loss. Therefore, the influence
of σGauss on the loss is relatively small. However, Table5
shows that pre-processing by a Gaussian filter improves the
detection pipeline performance.

To further investigate the dependencies of the hyper-
parameters, we propose to generate infimum projection
visualizations. The infimum projection of a countable finite
n-dimensional loss L : Q1 × · · · × Qn → R into a lower
dimensional projection P onto the index set I ⊆ [#Q] of fea-
tures Q = {Q1, . . . , Qn} withm elements can be performed
by:

P(I ; q1, . . . , qn) = min
qk∈Qk
k /∈I

{L(q1, . . . , qn)} (1)

In Fig. 9a–c, the infimum projections between the three
hyperparameters are shown. Figure9a can be compared with
the loss surface for c and σLoG in experiment2 in Fig. 7a
where both hyperparameters (c and σLoG) are plotted. Both
loss surfaces show the same structure and therefore a pri-
ori knowledge from experiment2 could be transferred to the
optimization problem in experiment3. In addition, from the
loss surfaces in Fig. 9b, c one can see that the former hyper-
parameters (c and σLoG) and the additional parameter σGauss
seem to be independent due to the homogeneous structures of
the loss surfaces. Thus, the infimum projection yields addi-
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Table 6 Results of PCA for the
whole loss surface data

PCA Variable PC1 PC2 PC3 PC4

Eigenvectors c 0.224 −0.948 0.001 × 10−13 0.224

σLoG − 0.668 −0.316 −0.081 −0.668

σGauss − 0.054 −0.026 0.997 −0.054

Loss − 0.707 −0.002 × 10−12 0.003 × 10−14 0.707

Eigenvalues 1.692 1.000 1.000 0.308

Cumulative variance ratio 42.3% 67.3% 92.3% 100.0%

The table provides the eigenvectors and eigenvalues of the four principal components (PC) together with the
ratio between the cumulative variance and the total variance in [%]

Fig. 9 Infimum projections of
the loss surface from
experiment3 for the 3D
hyperparameter space (c, σLoG,
and σGauss) sampled with Grid
Search. The global optimum is
marked with a blue star

tional information to the PCA analysis. Figure9c, d together
with Table5 indicates that the optimization problem can be
restructured by optimizing separately σGauss and c alongwith
σLoG. This sequential optimization procedure reduces the 3D
hyperparameter optimization to a 1Doptimization alongwith
a 2D optimization.

Discussion

The experimental results using the HyperHyper framework
with different optimizers for different image analysis tasks
show that the separation of sampling and optimization
strategy improves the performance. In experiment1 on the
segmentation of cell nuclei we found that CMA-ES and
SMAC-RF achieved the best Dice value for K-means clus-
tering, while CMA-ES obtained the best Dice value for

the U-Net pipeline. In this application, the task is to seg-
ment cell nuclei for telomere quantification on a single-cell
basis. False-negative segmentations are not critical. TheDice
score was used, which favors high true-positive and low
false-negative segmentations. In experiment2 the task was to
detect HCV particles in live cell microscopy images. SMAC-
XGBoost, SMAC-RF, and CMA-ES yielded the highest
F1 score. The F1 score favors high true-positive and low
false-negative detections. In this experiment, false-negative
detections are critical, since detection is a prerequisite for
single-particle tracking. From the experiment, it turned out
that the number of false-negative detections is relatively low.

The results using our hyperparameter optimization frame-
work are relatively close to the maximum possible accuracy,
i.e., the global optimum by (dense) Grid Search (Tables3, 4).
The global optimum in all experiments was determined by
dense Grid Search with a high number of evaluations, much
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higher than the number of samples for the optimizers. We
also performed coarse Grid Search with a similar number
of evaluations as for the optimizers. For coarse Grid Search,
the performance was worse compared to SMAC-XGBoost,
SMAC-RF, and CMA-ES. This shows that an appropriate
dense grid is necessary to compute the global optimum and
to achieve better results than the optimizers.

In order to show the improvement in an optimization strat-
egy, we calculated the improvement �Dice and �F1 with
respect to RandomSearch (warm-up phase with 20 samples).
Random Search is a basic method for optimization and thus
well suited as baseline for a comparison. To reduce the influ-
ence of the randomly selected samples within the warm-up
phase, we performed several runs (for K-means clustering in
experiment1 and for SEF in experiment2) and computed the
mean and standard deviation of �Dice and �F1.

The development of efficient optimization strategies is
important for image analysis pipelines. For fast implemen-
tation of new or extensions of existing optimization and
sampling strategies, we used a modular architecture for
HyperHyper. Therefore, sampling and optimization strate-
gies for specific use cases can easily be integrated. To find
the most appropriate sampling and optimization strategy, we
proposed using the infimum projection visualization of the
hyperparameter space. By combining spatial and temporal
visualizations of the convergence of optimizers, it is possible
to obtain insights into the optimization process which helps
to select a task-specific sampling and optimization strategy.

Conclusion

We proposed a new hyperparameter optimization framework
named HyperHyper, which has several advantages com-
pared to existing optimization frameworks. While existing
frameworks include only a limited number of optimization
methods, HyperHyper comprisesmore than 40 different opti-
mizers which was achieved by a modular architecture which
separates the sampling and optimization strategy. Using two
complex pipelines for segmentation of cell nuclei in tissue
microscopy images, we demonstrated the impact of separat-
ing sampling and optimization. Furthermore, HyperHyper
includes an integrated scheduler and job wrapper to deal
with different cluster computing infrastructures and pipelines
written in various programming languages. We also demon-
strated for a pipeline to detect HCV proteins in live cell
microscopy data that visualizations of the loss function help
to assess the convergence properties of different optimiz-
ers. In addition, we showed that an infimum projection of
the loss function can yield insights into the structure of the
optimization problem. Furthermore, dependencies between
hyperparameters can be revealed which can help to reduce
the dimensionality of the hyperparameter space by sequen-

tial optimization. Thismight also help in selecting an optimal
sampling and optimization strategy for similar optimization
problems.
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